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Abstract
The Chronic Kidney Disease is the 11th most common cause of death globally, ac-

counting for almost 1.2 million deaths worldwide per year. The most effective treat-
ment is to receive a kidney transplant from another person. Inmany countries, kidney
exchange schedules are done periodically. Pairs of donors and patients are pooled to-
gether, and the aim is to carry out asmany transplants as possible. The problem is that
in order to do a transplant, the donor and the recipient must be compatible. However,
it is often not possible to test the compatibility between all the pairs in the pool. For
this reason, strategies must be defined to choose which people to test in such a way
that as many transplants as possible can be ultimately performed. These solutions
result in long cycles of transplants involving several pairs, but a single failure due to
incompatibility on one transplant causes the entire cycle in which it is included to fail.
It is thus necessary to take into account the fact that all the transplants will not nec-
essarily be able to be done but we do not know a priori which ones will be. In this
report, stochastic programming models are used to tackle the problem. These models
are designed to take into account the uncertainty of the data in the problem. In par-
ticular, two models corresponding to different practical cases are derived. The quality
of these two models is evaluated along with the gains compared to other strategies,
for instance the one where we only consider the average compatibility failure to de-
cide about the strategy. The numerical results that are obtained will allow us to define
strategies according to the number of tests that can be performed in the pool.

Keywords : Kidney Exchange Program, Stochastic programming with recourse, Edge
formulation, Maximum matching, Failure-aware exchange model
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1 Introduction
The 2016 Global Burden of Disease Study [Nag+17] identifies the Chronic Kidney

Disease as the 11th most common cause of death globally, accounting for almost 1.2 mil-
lion deaths worldwide per year or equivalently 2.17% of all yearly deaths [HE18]. Be-
cause of its practical importance, but also because of the technical challenges that this
problem presents, the scientific community has taken up this problem for a few decades.
No permanent cure exists at present for the Chronic Kidney Disease, but it is possible
to receive a kidney from another person through a transplant. An alternative is dialy-
sis, which is a costly treatment. For example, it is estimated that in UK dialysis costs
between 15,000 and 35,000 pounds per patient per year [Bab+08]. Furthermore, dialysis
leads to a worse life expectancy and a worst life quality. That is why kidney transplants
are preferred.

The most commonway to receive a kidney is from a deceased donor. People awaiting
for a transplant are ordered as a waiting list using priority criteria such as the time spent
waiting, the severity of the disease, etc... The first patient undergoes a compatibility test
and if possible, the transplant is performed. Otherwise, one moves on to the next patient
on the waiting list. The issue is that demand exceeds supply and waiting lists continue
to grow. To meet this growing demand, most countries have set up a parallel donation
system inwhich donors are living people. For instance, the donor and the receiver can be
a relatives. However, it is difficult to find someone who is compatible withing one’s rel-
atives. In most countries, state organizations are in charge of Kidney Exchange Programs
(KEPs). These programs aim to match kidney donors and patients to perform kidney
transplants. Usually, patients are placed within a pool paired with a relative who is will-
ing to donate a kidney but who is not compatible. When the pool is estimated to be large
enough, a KEP run is organized. During this stage, doctors try to find out the best way to
perform transplants between the pairs of the pool. The donor of a pair gives its kidney to
the patient of another pair and so on until its paired patient also receives a kidney. The
solution often results in long transplant cycles. The aim is to perform asmany transplants
as possible to get the most out of available kidneys.

Before undergoing a transplant, several compatibility criteria between the donor and
the patient need to be checked. In general, it is not feasible to test all possible pair combi-
nations. As a transplant can only be carried out if it passes all compatibility tests, doctors
need to choose in advance who to test. Once compatibility outcomes are known, one
performs as many transplants as possible, using only those which are compatible. Thus,
doctors need a strategy to choose in advance who to test and which transplants will po-
tentially be carried out. The issue is that if a tested transplant is finally not feasible, the
entire transplant cycle in which it is included cannot be performed. Indeed, a pair giving
a kidney must receive one to fit ethical considerations. It is very common for such situa-
tions to occur, and currently many transplant opportunities are lost. The strategy imple-
mented to decide who to test is very important due to the impact of the decisions made.
However, it is hard to find a good one because of the uncertainty of the compatibility test
outcomes. Nowadays, it is possible to estimate the failure rate of each transplant, but it is
hard to be really confident about it. Strategies implemented in practice are based on this
data, but for the time being, no strategy is really effective and approved unanimously. In
this report, we focus on exploring strategies to find out patients that should take compat-
ibility tests in order to maximize the expected number of transplants ultimately carried
out during a KEP run.
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1.1 European Kidney Exchange Program
In this report, we focus on European KEPs, but such programs exist inmost countries.

They are much smaller that the United Network for Organ Sharing (UNOS) which is the
US program for organ donation, but they are larger than KEPs of developing countries.

1.1.1 Context and stakes for KEPs

The most common way to receive a kidney in European KEPs is through a deceased
kidney donation (DKD). For such donations, kidneys are transplanted from a deceased
person to a living patient. Variations exist in the legislation and the logistic organization
of European countries. For example, the Spanish DKD program had a transplantation
rate of 57.6 per million people in 2016 which was the highest rate in Europe. In compari-
son, France had a rate of 52.6 per million people in 2017 [Ant17]. However, the demand
for kidney transplantation exceeds the supply of kidneys retrieved from DKD. In most
European countries, waiting lists for kidney donations are rising up to several thousand
patients. In France, 9,089 patients were on the waiting list in 2012 and they were 14,291
in 2017 [Bio17]. This growing demand has led to the establishment of living kidney dona-
tions (LKD) alongside DKD in many countries. In a LKD, the patient receives a kidney
from a living person who can be a relative, a friend or a non-related person. LKD have
better long-term patient and transplant outcomes. However, the main issue is the lack of
donors. For instance, the percentage of LKD over the total number of transplants (LKD
and DKD) was 5% in Germany, 10% in Spain, 30% in the UK, and slightly over 50% in
the Netherlands in 2017 [Eur17]. The advantage of LDK compared to DKD is that there
is no need to carry out the transplant in a constrained period of time. Indeed, a kidney
coming from a deceased person is either stored on ice or connected to amachine that pro-
vides oxygen and nutrients until the kidney is transplanted. In LKD, donors constitute
a pool, and doctors organise periodically KEP runs. In order to maximize the number of
transplants carried out, they are usually done between two or several donor-patient pairs
which are compatible between each other but not within each donor-patient pair. This
result in a complex problem where doctors have to decide how to match the donors and
the recipients to get the most out of the KEP run without knowing which transplants can
really be done because of the compatibility uncertainty.

1.1.2 Compatibility and logistics in KEPs

Before carrying out a transplant, one has to make sure that the donor and the patient,
also called recipient, are compatible. The criteria for compatibility are :

• ABO-compatibility : Refers to blood type compatibility. Type O can donate to all
types. Type A can donate to Type A and Type AB. Type B can donate to Type B and
Type AB. Type AB can only donate to Type AB.

• HLA-match : Measures the extent to which the Human Leukocyte Antigens (HLA)
of the recipient and the donor are alike. The more they are alike, the more the pair
is considered to be compatible using this metric. When fully compatible, we speak
of a HLA-match, or simply a match.

• HLA-crossmatch : Measures whether a recipient has antibodies to the HLA of the
donor or not. If there are antibodies in high concentration, we speak of a positive
crossmatch and the transplant is highly likely to be rejected by the immune system
of the recipient. In the case of a negative crossmatch, the transplant can be carried
out.
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The ABO-compatibility and the HLA-match criteria can easily be assessed with blood
samples. Usually, the entire pool can take these twofirst compatibility tests. However, the
HLA-crossmatch test is more time consuming and more costly to process. First, the com-
patibility of the donor and the patient is guessed using a virtual HLA-crossmatch test based
on ABO-compatibility and HLA-match results. However, this virtual test is not fully reli-
able. For pairs that are matched and ABO-compatible, a real HLA-crossmatch test must
be undertaken by a laboratory before the transplant operation can be performed.

Managing these tests for a DKD transplant system is very straightforward. Each time
that a kidney is available, patients are ordered in function of priority criteria that can be
for instance the age, the time spent on the waiting list, etc... According to this priority
ordering, the first patient takes an ABO-compatibility test, an HLA-match test and a vir-
tual HLA-crossmatch test. If these tests succeed, an HLA-crossmatch test is performed.
If this last test allows it, the transplant is performed. Otherwise doctors move on to the
next patient.

For LKD transplants system, the situation is completely different. For most KEPs,
LKD are carried out between donor-recipient pairs that are compatible between each
other but not within each pair because it is hard to find a compatible relative. In LKD,
each pair giving a kidney must receive a kidney. To maximize the number of transplants
carried out, KEPs often constitute a pool of donor-recipient pairs and try to find the
maximum number of transplants that can be performed within the pool. Solutions to
such problems can involve long cycles of transplants between pairs. In a pool, it is often
feasible to check ABO-compatibility and HLA-match criteria between each pair. How-
ever, it is usually too complicated and too expensive to perform all the pairwise HLA-
crossmatch tests in the KEP pool. Furthermore, due to ethical considerations, KEPs re-
quire the transplants for all donors and pairs in a same cycle to occur simultaneously to
avoid withdrawal of donors after their specified recipients have received kidneys but be-
fore donating themselves. Thus, doctors must choose in advance which pairs will take an
HLA-crossmatch test, while being constrained by the capability of the laboratories and
the budget allowed for the tests. After taking the HLA-crossmatch tests and once the re-
sults are known, they find the best solution which maximizes the number of transplants
done, using only the ones with a negative HLA-crossmatch. The problem is that once
the pairs taking an HLA-crossmatch test are chosen and that the outcomes of the tests
are known, it is very likely that some transplants are finally not feasible because of a pos-
itive HLA-crossmatch. A transplant failure causes the entire transplant cycle in which it
is included to fail. Thus, it is very important to choose carefully which HLA-crossmatch
test to perform.

It is also possible that altruistic donors participate in LKD programs. Such donors are
not associated with a recipient and want to give one of their kidneys to save lives. They
do not need a kidney back when giving one of their own.

1.1.3 Differences between countries

The real challenge in LKD is that the number of HLA-crossmatch tests that can be
undertaken is usually significantly smaller than the number of transplants that are ABO-
compatible and HLA-matched in the KEP pool. Thus, doctors have to choose in advance
which pairs will take an HLA-crossmatch test and hope that the outcome is negative so
that the transplant can finally be carried out. For each recipient, a blood sample allows to
establish the percentage of reactive antibodies (%pra) which informs about the probability
of a negative HLA-crossmatch. This data is often used to choose the pairs that take an
HLA-crossmatch test, but no single strategy is universally accepted across the different
KEPs.

Most of the countries perform to aKEP run periodically or once there are enough pairs
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Figure 1: Each node represents a donor-recipient pair. Arrows represent potential transplants that are ABO-compatible and
matched. Green and red arrows correspond respectively to negative and positive HLA-crossmatch outcomes. In this case, we
consider that only 5 HLA-crossmatch tests can be carried out. The strategy 1 is more risky but can lead to a better solution
because it involves more transplants. The strategy 2 is less risky as a positive HLA-crossmatch outcome only affects a part of
all the transplants that can be carried out. With the outcomes in this example, no transplants are carried out in the first strategy
because of the failure of 6-1. In the second strategy, transplants between 1 and 3 can still be carried out, regardless of the failure
of 6-2.

in the pool. For instance, the UK KEP improves the likelihood that all transplants in a
cycle will be carried out by allowing only pairwise and three-way exchanges in the pool
to minimize the risk of breaking a transplant cycle because of a positive HLA-crossmatch
in the pairs that are tested. After the HLA-crossmatch outcomes have been obtained,
the KEP organization performs as many transplants as possible using the ones that were
tested and have a negative HLA-crossmatch. France has the same strategy, but only al-
lows two-way exchanges. In the Netherlands, if a positive HLA-crossmatch is found in
the KEP run, tests are repeated to find the next-best solution, until all crossmatch tests
are negative. In general, a limit on the maximum transplant cycle length is defined as a
function of the hospital capability to perform several transplants simultaneously. Amax-
imum number of HLA-crossmatch tests that can be taken is also established as a function
of the capability of laboratories. Generally speaking, allowing larger cycles may lead to
an increase in the number of potential transplants, but the proposed solution incurs an
increased risk of positive HLA-crossmatch tests and entire cycle failures.

Figure 2: Example of three different strategies. UK allows only tree-way exchanges to be more robust to positive HLA-
crossmatch outcomes. France has the same strategy but with two-way exchanges. Netherlands strategy is first to maximize
the number of tests performed and if there are some positive HLA-crossmatch, new tests are taken to close broken transplant
cycles.
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1.2 Objective and constraints
In the sequel, we only focus on LKD. As HLA-crossmatch tests are made between the

donor from a pair and the recipient from another pair, we also speak of HLA-crossmatch
test for a transplant rather than for a couple of pairs. The aim is to find a strategy to
choose a set of transplants that take an HLA-crossmatch test in order to maximize the
number of transplants ultimately carried out during a KEP run.

SinceHLA-crossmatch outcomes cannot be foreseen before the test is performed, they
introduce an uncertainty into the problem. However, once the decision of which tests
to perform is made and that HLA-crossmatch outcomes are known, all the uncertainty
about compatibility is disclosed and the remaining problem becomes deterministic. To
formalize the KEP problem, we consider the following constraints :

C1 : Transplant chains and cycles are allowed in the KEP

C2 : A pair can receive and give at most one kidney

C3 : An altruistic donor can give at most one kidney and does not need to receive one

C4 : A non-altruistic pair donating a kidney must receive a kidney

C5 : Chains and cycles of length at mostK are allowed in the KEP

C6 : At most B HLA-crossmatch tests can be done in the KEP run

C7 : The transplants ultimately carried out must only be tested transplants with a
negative HLA-crossmatch

The value ofK andB depends on the country, the KEP strategy, the hospital capabilities
to perform several transplants simultaneously and the lab capabilities to do multiples
HLA-crossmatch tests.

1.3 Available data
Information is shared by KEP institutions to help researchers improve KEPs using

real data. As KEP is a very practical problem, improvement must be realistic. In the
following, we present the data on which we rely.

1.3.1 PrefLib

PrefLib is an online library hosting more than 3000 datasets about organ donation
[MW13]. In particular, its Matching Data (MD-00001) category contains 310 datasets of
synthetic KEP pools generated similarly to real KEP pools [DPS13]. A .wmd file encodes
pairs that constitute each pool and the transplants that are ABO-compatible and HLA-
matched. No information is given about HLA-crossmatch of transplants. In addition, a
.dat file provides meta-information about each pair, including :

• The donor and patient blood type

• Whether the person needing the kidney is the wife/husband of the donor or not

• The %pra of the patient

• Whether a given pair is an altruistic one or not
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1.3.2 Failure rate and outcome generation

To build and evaluate strategies, we need to generate artificially HLA-crossmatch test
outcomes. In the following, we refer to the probability of a positive HLA-crossmatch
as the failure rate of a transplant. Thus, for each transplant, we can generate artificially
an HLA-crossmatch outcome as a Bernoulli sample using its failure rate as the failure
parameter of the Bernoulli law. We rely on [DPS13] in which four rules are defined to
set the failure rate of each transplant :

• Constant : The failure rate of each transplant is set to 0.7.

• Binomial : For each transplant, two uniform random variables u and v in [0, 1] are
sampled. If u < 0.25, the failure rate is set to 0.2v. Else, the failure rate is set to
0.8 + 0.2v.

• BinomialUNOS : For each transplant, if the %pra of the recipient is less than 80%,
the failure rate is set to 0.1. Else the failure rate is set to 0.9.

• BinomialAPD : For each transplant, if the %pra of the recipient is less than 75%,
the failure rate is set to 0.28, else, the failure rate is set to 0.58.

We also define a fifth rule which has no practical meaning, but which will be useful for
defining strategy quality criteria :

• NoFailure : The failure rate of each transplant is set to 0.

In the US KEP, about 7% of the total number of transplants succeed and about 16% fail
because of a positive HLA-crossmatch. The other 77% of the total number of transplants
are not done for various reasons : withdrawal of a donor-patient pair, the patient has
received a kidney from a deceased donor, the patient has chosen to be treated by dialysis,
etc ... Thus, on average, 16

16+7 ' 70% of the transplants among the one that takes an HLA-
crossmatch test fail. In most KEPs, committees of professionals have to assign to each
transplant a failure rate. They are almost all in agreement to rely on the %pra of the
patient and to assign the failure rate as in the BinomialUNOS generation rule.

However, the medical knowledge of the %pra for each patient is often incomplete
and the failure rate cannot be assigned as easily in general. In the US KEP, about 75%
of the patients have a %pra larger than 80%. According to the BinumialUNOS rule, it is
likely that their failure rate for transplants involving these patients is about 90%. For the
remaining part of the pool, the failure rate is likely about 10%. In the Binomial generation
rule, the variable u represents the random drawing of the %pra of the patient and the
variable v is used to express the uncertainty about the exact knowledge of the %pra and
thus the uncertainty about the failure rate. The Constant generation rule corresponds to
the casewhere no information about the%pra is available. In this case, we only know that
about 70% of the transplants cannot be carried out because of a positiveHLA-crossmatch.

The BinomialAPD is different from the other rules and has an overall failure rate about
35%. This failure rate corresponds to the average failure rate observed in the US organ
transplant system which includes kidney transplants but also heart transplants, etc ...
This is a more optimistic rule than the BinomialUNOS one.

1.4 Literature background
The idea of receiving a kidney from a relative was introduced by [Rap86] in 1986.

Since then, different disciplines, such as Medicine and Economy but also Mathematics
and Computer Science, have been interested in the question of how to deal efficiently
with kidney donations. After discussing ethical questions of this problem [Ros+97], first
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Figure 3: Data generation method. First, the KEP pool is extracted from the .wmd and .dat files of PerfLib. Then failure rates
are set according to one of the 5 rules. Finally, outcomes are generated as Bernoulli samples using the failure rate.

strategies developed to match a pool of patient-donor pairs were using Edmond’s Blos-
som algorithm [Kar71] which finds a maximum weighted matching on a graph. This
algorithm is suited for the case of two-way exchanges. Later on, heuristics based on this
algorithm were developed to extend strategies to tree-ways exchanges [Bof+17] or to
cases where we also consider half-compatible pairs, that is pairs that are not matched
but for which a treatment makes a transplant feasible, such as in the Scandinavian KEP
for instance [AK16]. This past decade, new results comparing the hardness of different
approaches of the problem have been provided. For example, authors in [BMR09] dis-
cuss about the complexity of the problem for the case of chains of bounded-length and
with cycles of length 2 or 3. In [AJM13], these two problems are compared with respect
to their robustness and waiting time in the waiting lists. Authors of [AR14] show the
benefit of creating a large pool for KEP but this leads to more difficult problems to solve.

As KEP policies differ between countries, many different models were proposed for
the KEP problem. Most commonly used are the edge formulation and the cycle formula-
tion firstly derived in [ABS07a]. The edge formulation assigns one variable per transplant
whereas the cycle formulation assigns one variable per transplant cycle. A column gen-
eration method and a cutting plane algorithm are also provided in this paper. A new
model extending the edge formulation along with resolution algorithms suited for the
UKKEPwas proposed in [MO15] and is still used in practice in the UKKEP software. In
[GKW14], a new Branch-and-Price framework with a polynomial pricing problem was
introduced to handle the case where long cycles and chains are allowed. This framework
allows to deal with larger pools within a reasonable solution time. Three new formula-
tions, two of which are compact, were introduced in [Dic+16] and are based on graph
duplication. These formulations also allow to tackle the problem on large-scale data, for
example with the Branch-and-Price framework presented in [RBA20]. In [Bir+19] , most
of themodels whichwere introduced and that are used in practice are summarised. Most
of the practical considerations and the differences between the different European KEPs
are also discussed.

In addition to deterministic models designed for the KEP problem, many studies
aim at taking into account the uncertainty about the pair compatibility while building
a matching strategy. In such models, we seek to maximize the expected number of trans-
plants ultimately carried out. In [Blu+15] and [AKL19], authors introduce an algorithm
in which only a constant number of compatibility queries are required per vertex to re-
trieve the solution that could have been obtainedwith an infinite number of compatibility
tests. Authors show that not all the transplants need to be tested in a near optimal strat-
egy. Models considering random graphs are introduced by [TP15] and [Ünv10] along
with heuristic resolution methods. The first stochastic models that are scalable were in-
troduced by [And14]. A study about the classification of the different scenarios that can
occur under compatibility uncertainty is performed by [Lee+18]. One of the most com-
plete models taking into account the transplant failures is presented in [DPS13]. In this
paper, away of generating the data artificially in a realistic way is also provided. Recently,
robust KEP models were proposed in [Glo+15] and [Car+20].
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2 Two-stage stochastic programming with re-
course

To tackle the KEP problem, we use a two-stage stochastic programming model with
recourse. In this section, we review the theoretical background of these models.

2.1 Problem formulation
Stochastic programming refers to the optimization of some statistical functions. In

the following, we consider the case of an expected value maximization, but stochastic
programs can be extended to other statistical functions. In such problems, at least a part
of the data is uncertain and is represented by random variables. In a two-stage stochastic
program with recourse, first-stage decisions have to be taken before the uncertain data is
disclosed. Then, at least a part of the realization of the random variables is revealed, and
recourse actions can be taken in the second-stage of the problem as a function of the random
variables realizations and of the first-stage decisions. In order to formulate a two-stage
stochastic program with recourse, two types of variables are needed :

• First-stage decision variables denoted x, representing the decisions taken in the first-
stage

• Second-stage recourse variablesdenoted y(ω), representing the recourse actions taken
in the second-stage

Here ω ∈ Ω is the random component of the problem. As y(ω) is chosen once the uncer-
tainty is disclosed, it depends on the outcome of the uncertain data. The second stage
can also depend on the first-stage decisions that were taken.

A stochastic program with recourse admits the following general formulation :

(SP) : z?SP =


max
x,y(ω)

cTx+ E
[
q(ω)

T
y(ω)

]
s.t. Ax = b

T (ω)x+W (ω)y(ω) = h(ω) ae. ω ∈ Ω

x ∈ X , y(ω) ∈ Y ae. ω ∈ Ω

(2.1a)
(2.1b)
(2.1c)

In this problem, q(ω), T (ω), W (ω) and h(ω) is the uncertain data of the problem. The
objective is to maximize the profit of the first-stage decisions plus the expected profit of
the recourse actions. Even though the problem is a maximization over x and y(ω), we are
only interested in finding the optimal first-stage decisions. Indeed, once these decisions
are taken, we do not need to fix the recourse variables immediately. Once the uncertainty
is disclosed, it remains a deterministic problem with a fixed value for q, T ,W , h but also
for x as the first-stage decisions have already been taken. Thus, the remaining problem
is just to find the optimal recourse actions for the case which has just arrived.

The constraint (2.1a) is the classical constraint encountered in linear programs that
allows to control the domain of feasibility of first-stage variables. The constraint (2.1b)
links the second-stage variables with both first-stage variables and realizations of the
uncertain data. Finally, the constraint (2.1c) ensures that variables belong to the right
set. For instance, one can have X =

{
x, x ≥ 0

}
or X =

{
x, x ∈ {0, 1}

}
The matrix W (ω) is called the recourse matrix. Most of the time, recourse strategies

are fixed in advance so W (ω) ≡ W . In this case, the problem is called a fixed-recourse
problem. In the sequel, we only focus on this kind of stochastic problem in which the
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uncertain data of the problem can be packed into a single vector denoted ξ = (q, T, h).
The distribution of ξ is assumed to be known.

The recourse function corresponds to a second-stage problem where the first-stage de-
cisions have already been fixed. It depends on the realization of the uncertainty. This
recourse function, or recourse problem, can be defined as

Q(x, ξ(ω)) =


max
y(ω)

qT(ω)y(ω)

s.t. Wy(ω) = h(ω)− T (ω)x

y(ω) ∈ Y

This problem corresponds to the deterministic problem where decisions x have already
been fixed, where a realization ξ(ω) of the uncertainty occurs and where we need to take
recourse actions y(ω). Using this notation, a more convenient way to formulate SP is
under its implicit form :

(SP) : z?SP = max
x∈X

{
cTx+ E [Q(x, ξ)]

}
where X = {x ∈ X , Ax = b}. To lighten notations, the expected value function

Q(x) = E [Q(x, ξ)]

is also often used. For more insights and examples of stochastic programs with recourse,
we refer to [Kin88].

2.2 Quality of a stochastic solution
There are different approaches to a problem with uncertainties. In the literature, sev-

eral metrics were proposed to evaluate the relevance of using a stochastic programming
model for this kind of problems.

2.2.1 Expected value problem

When dealing with a problem with uncertainty, a way to simplify it is to consider
only the average case of the random realizations. In this approach, we lose a lot of the
information about the uncertainty, but the problem is usually easier to solve because it
becomes fully deterministic. This easier problem is called the expected-value problem and
can be formulated as

(EV) : z?EV =
{

max
x∈X

cTx+Q(x,E [ξ])
}

When solving EV, we get the best decisions xEV that can be taken for the average realiza-
tion of the uncertainty. Once these decisions have been fixed, the real realization of the
uncertainty occurs and it remains to find the right recourse actions to take.

The expected result of using the expected value solution corresponds to the average value
of the objective of SP if the decisions have been fixed to xEV. This value can be computed
as

EEV = cTxEV + E [Q(xEV, ξ)] (2.3)

As xEV is not necessarily the optimal solution of SP, one has

z?SP ≥ z?EV (2.4)

11



Thus, to estimate the gain of solving SP instead of EV, we can use the value of the stochastic
solutionwhich is defined as

V SS = z?SP − EEV or %V SS = 100× z?SP−EEV
z?SP

(2.5)

This VSS value represents the gain obtained by considering a more complicated problem
that does not neglect uncertainty rather than a simpler problem which considers the av-
erage case. The larger the VSS, the larger the gain and the more relevant to consider SP
rather than EV.

2.2.2 Wait-and-see value

An easy way to find an upper bound on the optimal value of SP is to consider that the
realization of ξ that will occur is known. In this case, decision and recourse strategies can
be chosen with all the data of the problem in hand. The mean objective value that can be
obtained when all the uncertain data realization is known is called the wait-and-see value
and is defined as

WS = E
[
max
x∈X

cTx+Q(x, ξ)

]
(2.6)

The WS case is the most optimistic case of the problem where all the realizations can be
anticipated. Thus, it leads to a better solution than the one of SP as more information is
known. One has

WS ≥ z?SP (2.7)
To quantify the loss of not having a total knowledge of the random variable realizations,
one can use the expected value of perfect information which is defined as

EV PI = WS − z?SP or %EV PI = 100× WS−z?SP
z?SP

(2.8)

If EVPI is small, then the solution of SP allows to get very close to an omniscient solution.
If EVPI is large, then further investigation of the underlying uncertainty is warranted, as
the availability of information has a significant impact on the optimal value.

2.2.3 Case of binary recourse variables

In SP, the constraint (2.1c) ensures that variables belong to the right set. In many
practical cases, decision or recourse variables need to be integers or binary. Imposing
binarity constraints only for the decision variables x breaks the convexity of the problem,
but Branch-and-Bound methods allow to deal with it. However, imposing binarity con-
straints on the recourse variable y(ω) is different. This breaks the problem structure that
is usually exploited by solution methods. In such cases, second stage variables belong to
the set

Y =
{
y, y ∈ {0, 1}m

}
(2.9)

in the case where |y(ω)| = m. Usually, this kind of problem is harder to solve. A way
to quantify the quality of the solution of SP with (2.9) is to compare it with the solution
of its convex relaxation where we only impose y ∈ Yr = {y, 0 ≤ y ≤ 1}. If SP has the
constraint (2.9), we denote

(SPr) : z?SPr =


max
x,y(ω)

cTx+ E
[
q(ω)

T
y(ω)

]
s.t. Ax = b

T (ω)x+W (ω)y(ω) = h(ω) ae. ω ∈ Ω

x ∈ X , y(ω) ∈ Yr ae. ω ∈ Ω

(2.10a)
(2.10b)
(2.10c)
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As SPr is a relaxation of SP, one has

z?SPr ≥ z?SP (2.11)

Furthermore, solving SPr still allows to get decision variables xSPr that are usable in SP.
However, xSPr are not the optimal decision variables of SP in general so the value of SP
while fixing x = xSPr is usually suboptimal.

In the case of (2.9), the EEV usually has no practical meaning. For instance, we will
see that in KEP models, a constraint of the following form is considered :

y(ω) ≤ h(ω)

When solving the EV, this constraint becomes

y ≤ E [h]

and if E [h] < 1, we can deduce that the optimal solution is y = 0. Thus, the EEV breaks
the structure of the solution and does not inform a lot about the quality of the stochastic
solution. An alternativeway in the case of (2.9) is to consider the expected value problem
for SPr rather than for SP. In the above example, we rather consider a continuous y so
the solution is not forced to be y = 0. We denote

• EEVr the EEV of SPr

• VSSr the VSS of SPr

As SPr is a relaxation of SP, the EEVr gives information about the quality of the relaxation
of SP. In the following, we always use EEVr instead of EEV as soon as recourse variables
are integer.

2.3 Handling a stochastic program in practice
The problem SP is not tractable in practice because (2.1b) and (2.1c) represent an un-

countable number of constraints when ξ has a continuous distribution. In the following,
we introduce a method allowing to solve SP in practice.

2.3.1 Sample Average Approximation

When the random variable ξ has a discrete distribution, the value of Q(x) can be
computed explicitly by splitting the expected value over each possible value of ξweighted
by its probability. The problem SP can be solved directly by explicitly creating a set of
variables and constraints for each realization of the uncertain parameter. In such case,
the problem has the following formulation:

(SP) : max
x∈X

cTx+

S∑
s=1

psQ(x, ξs) (2.12)

where (ξ1, . . . , ξS) are the values that ξ can take with probabilities (p1, . . . , pS). The prob-
lem (2.12) is fully deterministic and can be solved to find the optimal value of x. Many
classical methods allow to tackle this kind of deterministic problem. The particular struc-
ture of (2.12) can also be exploited with decomposition methods such as the L-shaped
method [LL93] which can even be used when binarity is required for first and second
stage variables.

When the random data has a continuous distribution, there is an uncountable num-
ber of possible values for ξ. As constraints (2.1b) and (2.1c) must be satisfied ae. ω ∈ Ω,
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the number of constraints in the problem is also uncountable. This kind of problem is
not tractable in practice. One way of tackling the problem in such cases is to use aMonte-
Carlo simulation to approximate the continuous distribution of ξ by a discrete distribu-
tion. If we are able to generate a S-iid sample (ξ1, . . . , ξS) of ξ, it is possible to replace the
expected value function Q(x) by the unbiased estimator Q̂S(x) = 1

S

∑S
s=1Q(x, ξs). This

allows to retrieve a problem of the form (2.12) with a countable number of constraints
and variables. The model created using this estimator is called the Sample Average Ap-
proximation (SAA) of SP:

(SPS)



max cTx+
1

S

S∑
s=1

(qs)
T
ys

s.t. Ax = b

T sx+W sys = hs ∀ s ∈ {1, . . . , S}
x ∈ X , ys ∈ Y ∀ s ∈ {1, . . . , S}

(2.13a)
(2.13b)
(2.13c)

In this formulation, constraints (2.1b)-(2.1c) are approximated by constraints (2.13b)-
(2.13c). The quality of the approximation of SP by SPS depends on the S-iid sample
used. Usually, the larger the S, the better the approximation. In the continuous case,
elements of the sample (ξ1, . . . , ξS) are called scenarios.

The main drawback of the SAA is that solving SPS with a large S is hardly tractable
in practice because of the dimension burden drawn by variables ys that grows with the
number of scenarios used. We do not want S too large in order to make SPS tractable but
we also want S large enough for the approximation to be correct. To calibrate the optimal
number of scenarios S to use, it is possible to plot the objective value of SPS as a function
of S. The more the objective stabilises and its variance tends to 0, the better the quality
of the approximation. The value of S is chosen as a trade-off between the quality of the
approximation and the computational effort needed to solve the SAA of SP.

Figure 4: SAA of a KEP problemwith different numbers of scenarios. For each number of scenarios, the SAA is solved 20 times
for 20 different scenario samples, and we report the mean objective, the variance of the objective and the mean solution time.
We can see that when the number of scenarios increases, the objective stabilizes but the solution time increases.

2.3.2 Real cost vs. perceived cost

When solving SPS instead of SP, optimal decisions obtained are not necessarily the
ones that would have been obtained by solving SP. This depends on the quality of the
SAA and the number of scenarios used. Furthermore, the objective value obtained by
solving SPS is computed for a discretized approximation of the distribution of ξ and not
for the real distribution of ξ. Thus, it is crucial to take into account that SPS has a biased
objective value and gives a biased optimal solution. For instance if S = 1, solving SPS
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can lead to a decision with a very high objective value in SPS . If one uses this decision as
the first stage action, one can expect to have such a good result after the revelation of the
uncertainties. On the other hand, if the scenario that finally occurs is very different from
the one used in the SAA, the real cost associated with the SAA decision will be very far
from optimal. In the following, if x?SPr are the optimal decisions of SPS , we denote

• zS (perceived cost of x?SPr) : the objective of SPS associated with the decision x?SPr
• z?S (real cost of x?SPr) : the expected cost that would have been obtained in practice

if decisions x?SPr are taken

Decisions x?SPr are the only ones that can really be computed in practice when ξ has a
continuous distribution. Once this solution is obtained by solving SPS , we only get a
perceived cost corresponding to the sample of scenarios considered. However in practice,
the scenario that finally occurs can be different from the ones considered in the SAA. The
real cost of a decision x?SPr is the one that we can expect to have in practice. The value z?S
can be obtained in theory by solving SP with a fixed decision x = x?SPr but this problem
is still intractable in practice because of the uncountable number of constraints. Thus, we
rather approximate the value z?S by solving a SAA of SPwith the fixed decision x = x?SPr
and with a very large number of scenarios Se >> S.

The solution of the SAA is an optimistic one. Indeed, the SAA can be seen as a relax-
ation of SP as it neglects a part of the uncertainty by approximating the distribution of
ξ. The more scenarios, the better the approximation and the smaller the difference. One
has,

z?SP ≤ · · · ≤ E [zS ] ≤ E [zS−1] ≤ · · · ≤ E [z1] (2.14)

In addition, if Y is a convex set, the estimator Q̂S of Q is consistent :

lim
S→+∞

zS = z?SP wp.1 (2.15)

Issues about the practical evaluation of SP also occur when computing the EEV and
the WS value. Thus, we will approximate E [ξ] using a Monte-Carlo approximation

E [ξ] ' 1

Se

Se∑
s=1

ξs (2.16)

when computing the expected-value solution and the EEV. Furthermore, theWS value is
approximated by computing a discrete expected value over a set of Se scenarios as

WS ' 1

Se

Se∑
s=1

[
max
x∈X
{cTx+Q(x, ξs)}

]
(2.17)
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Figure 5: Summary of the different problems and values defined in this section. Dashed arrows are computations that are
not tractable in practice an that are usually approximated : SAA to solve a problem or Monte-Carlo simulation to evaluate an
expected value.
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3 KEP stochastic models
The following aims to define some two-stages stochastic programming formulations

of the KEP problem. In a KEP, the uncertain data is the outcome of the HLA-crossmatch
tests. In a first stage, we want to find out which transplant is interesting to take an HLA-
crossmatch test. We only consider transplants that are ABO-compatible and matched,
which are those having a chance to succeed. Then, uncertainties about theHLA-crossmatch
are disclosed for tested transplants and we can finally find out which transplants to carry
out in the KEP run using only the ones with a negative HLA-crossmatch.

3.1 Modelling a KEP
Before deriving models, we introduce a way to model a KEP run using graphs. There

are other ways of modelling a KEP it but the graph model has the advantage of having
variables with a practical meaning.

3.1.1 Graph model

A KEP pool can be represented by a directed graph G(V,A) where each vertex v ∈ V
corresponds to a donor-patient pair. Each directed edge a ∈ A represents a potential fea-
sible transplant from a donor to a recipient, that is to say ABO-compatible and matched
but without the knowledge of the HLA-crossmatch. The subset Va ⊂ V denotes the set
of altruistic donors in G if there are any. Altruistic donors do not need to receive a kid-
ney, however we add a dummy return edge between each non-altruistic pair and each
altruistic pair. With these dummy edges, we only have to consider cycles and not both
cycles and chains. In some cases, it can be interesting to weight each transplant to denote
its priority. For dummy return edges, this weight is set to 0.

Figure 6: Left : Graph representation of the pool with and altruistic donor a before adding the dummy return edges. The donor
of 2 does not necessarily need to give its kidney according to C4. Transplants carried out are in green. Solution is formed of
cycles and chains. Right : Graph representation with dummy return edges, represented as dashed lines. The transplant 2→ a
is not really carried out but this dummy edge allows to consider only solutions formed of cycles.

As HLA-crossmatches are unknown a priori, it is possible that some elements of A
can not be used in the final KEP run. Thus, the real objective is to select a set of edges
in A which will take HLA-crossmatch tests. Once that we have selected the edges and
that the HLA-crossmatch outcomes are known, the problem is just to perform as many
transplants as possible while satisfying C1-C5 and using only tested transplants with a
negative HLA-crossmatch. This problem is easier because it is fully deterministic.
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Figure 7: Example of KEP run. Donor-recipient pairs are the vertices, feasible transplants are the black arrows. Arrows with
a dashed line do not take a HLA-crossmatch test. A red (resp. green) arrow corresponds to a positive (resp. negative) HLA-
crossmatch.

3.1.2 Notations

The following notations are used in the models derived further.

Graph-related notations

• C/ Ck : Cycles in G/ Cycles in G of length at most k

• δ−S : Edges arriving in S ⊂ V in a directed graph

• δ+S : Edges leaving S ⊂ V in a directed graph

• δS : Edges arriving or leaving S ⊂ V in an undirected graph

Data-related notations

• wa ≥ 0 : The priority of the transplant a ∈ A

• Ra(ω) ∈ {0, 1} : The binary r.v. coding the outcome of the HLA-crossmatch test for
the transplant a ∈ Awhere ω ∈ Ω is the realization of the uncertain data. IfRa = 1,
the transplant can be carried out (negative HLA-crossmatch).

The priority of the transplant is a positive number that weights the transplant a. For in-
stance, it can be fixed by the doctors and it meaning is that the larger wa, the faster the
transplant amust be done. The HLA-crossmatch outcomes are supposed to be indepen-
dent. We also use the vector notation w = {wa}a∈A and R = {Ra}a∈A.

3.2 Variables, sets of constraints and objective
In the following, we define variables that are used and some constraint sets. These

are defined for a given graph G(V,A) corresponding to the instance that is treated, and
they will be combined later on to write models in a simple way.

3.2.1 Variables

In the graph formulation, there is one first stage and one second stage variable per
transplant.

• xa : The binary first-stage decision variable indicating whether a ∈ A is chosen to
take a HLA-crossmatch test or not.

• ya(ω), ω ∈ Ω : The binary second-stage recourse variable indicating whether a ∈
A is used in the final KEP run or not, depending on a realization of the HLA-
crossmatch test outcome Ra(ω).
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In the following, we also denote x = {xa}a∈A and y = {ya}a∈A.

3.2.2 Sets of constraints

It is useful to introduce sets of constraints to write several models in a simple way.
The following sets of constraints will be combined along with an objective function and
the variables defined above to define models.

• XB : The first set of constraints corresponds to the constraint C6. It expresses that
the total number of HLA-crossmatch tests that can be taken is B and that either we test a
transplant, or we do not.

x ∈ XB ⇐⇒


∑
a∈A

xa ≤ B

x ∈ {0, 1}|A|

(3.1a)

(3.1b)

• F : This second set of constraints expresses C2 and C3 and can be seen as flow con-
straints forG(V,A), ensuring that every pair giving a kidney receives one, except altruistic
donors.

∀ ω ∈ Ω, y(ω) ∈ F ⇐⇒



∑
a∈δ+v

ya(ω) ≤
∑
a∈δ−v

ya(ω) ≤ 1 ∀ v ∈ V \ Va

∑
a∈δ+v

ya(ω) ≤ 1 ∀ v ∈ Va

(3.2a)

(3.2b)

• Tx : This set corresponds to C7 and expresses that transplants carried out must have
been tested and must have a negative HLA-crossmatch. These constraints depend on the
first-stage variables as only tested transplants can be carried out.

∀ ω ∈ Ω, y(ω) ∈ Tx ⇐⇒
{
y(ω) ≤ R(ω)

y(ω) ≤ x

(3.3a)
(3.3b)

• CK : This set expresses the constraint C5 which is treated separately because this is
a complicating constraint. The set is indexed by the maximum lengthK of the cycles.

∀ ω ∈ Ω, y(ω) ∈ CK ⇐⇒
∑
a∈c

ya(ω) ≤ K − 1 ∀ c ∈ C \ CK (3.4)

The number of constraints contained in the set is not polynomial as a function of the
graph data, contrary to the other sets defined above as it enumerates all the cycles of
length at mostK.

• Y and Yr : Finally, we introduce a set coding that a transplant can either be carried
out or not. In addition, we also define its relaxed version corresponding to the unrealistic
case where only portions of transplants can be carried out. This last set will be useful to
define the EEVr for the KEP problem as explained in 2.2.3.

∀ ω ∈ Ω, y(ω) ∈ Y ⇐⇒ y(ω) ∈ {0, 1}|A| (3.5a)

∀ ω ∈ Ω, y(ω) ∈ Yr ⇐⇒ y(ω) ∈ [0, 1]|A| (3.5b)
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3.2.3 Objective

In a KEP, we seek to chose the right transplants to test to maximize the total utility of
the transplants ultimately carried out. As we do not know HLA-crossmatch outcomes,
we maximize the expected total utility of transplants carried out. The quantity we want
to maximize is

E[wTy(ω)] (3.6)

We can notice that in this case, first-stage variables are not involved in the objective value,
they only appear in the constraints.

3.3 Basic arc formulation
We first focus on the basic arc formulation introduced in [And14]. This formulation

aims to maximize (3.6) while satisfying all the constraints given in 1.2. For this formula-
tion, the recourse function can be defined as

∀ω ∈ Ω, QKBA(x,R(ω)) =

{
maxy(ω) wTy(ω)

s.t. y(ω) ∈ F ∩ Tx ∩ CK ∩ Y
(3.7)

The recourse function is indexed byK which is a problem parameter denoting the max-
imum length of cycles allowed. The value of K depends mostly on the capability of
hospitals to perform several transplants simultaneously. Using this recourse function,
the basic arc formulation is defined as

(BA) : z?BA = max
x∈XB

E
[
QKBA(x,R(ω))

]
(3.8)

The value of B is the maximum number of HLA-crossmatch tests that can be carried
out and also depends on the KEP considered. The BA formulation expresses that given a
maximumnumberB of HLA-crossmatch test allowed, wewant to findwhich transplants
to test in order to maximize the expected total utility of the transplants ultimately carried
out, while ensuring that all the constraints defined in 1.2 are satisfied.

We can notice that the number of variables is polynomial as a function of the input
data. However, there is an exponential number of constraints because of the constraint
set CK , even when considering a SAA of the problem. Indeed, we need to enumerate all
the cycles of lengths at mostK inG(V,A). This can become a serious issue when solving
a KEP problem on pools with a large number of pairs. To deal with this issue, two choices
are considered.

• The first option is to relax the complicating constraint (3.4) by setting K = +∞.
Thus, we retrieve a polynomial number of constraints. In this case, cycles of length
greater than K can be formed so the solution will be supra-optimal and will not
necessarily satisfy C5.

• The second option is to fix K = 2 in BA. Indeed, BA is NP-hard when K ≥ 3
but becomes P if K = 2 [ABS07b]. In this way, the problem can be reformulated
into a maximum-weighted matching problemwith some extra constraints. As only
cycles of length two can be formed, the solution will be sub-optimal for KEPs in
which cycles of lengthK ≥ 3 are allowed.

In the following, we give the two models corresponding to these two options. In our
numerical experiments, we never solve BA directly. We rather solve one of the two for-
mulations derived in 3.4 (case withK = +∞) and in 3.5 (case withK = 2).
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3.4 Relaxed arc formulation
In a first instance, one considers the first option in which the complicating constraint

(3.4) of maximal cycle length in BA is relaxed. In this way, we retrieve a problem which
has a polynomial number of variables and constraints. However, it is possible that long
cycles are formed in the solution.

This relaxed formulation is very simple to write as fixing K = +∞ is equivalent to
removing the constraint (3.4) from the formulation. Thus, the recourse function of this
formulation can be written as

∀ω ∈ Ω, QRA(x,R(ω)) =

{
maxy(ω) wTy(ω)

s.t. y(ω) ∈ F ∩ Tx ∩ Y
(3.9)

Notice that here y(ω) does not necessarily belong to CK . The relaxed arc formulation can
be defined as

(RA) : max
x∈XB

E [QRA(x,R(ω))] (3.10)

The second stage problem can be seen as a maximum-cycle cover problem using only
edges with a negative crossmatch for the uncertainty realization considered. In the nu-
merical application section, we study how many cycles of each length are created in the
solution to see how much the constraint C5 is still respected when it is removed from the
problem.

Figure 8: A solution of BA and a solution of RA with B=5 and K=3. Even if K=3, the relaxed arc formulation allows to form
cycles of larger length. This is not possible in the basic arc formulation.

3.5 Matching formulation
As a second option, one can set K = 2 in BA. The advantage is that it is possible to

transform the initial KEP graph into amatching graph and to solve amatching problem for
this transformed graph, which is a polynomial solvable problem. In this case, we build a
solution that matches pairs two by two. This can be relevant for some KEPs, such as the
French one as explained in 1.1.3.

3.5.1 Graph transformation

It is possible to transform the initial directed graph G into an undirected graph Gm
where each pair of directed edges (i, j) and (j, i) in G is transformed into a single undi-
rected edge {i, j} in Gm. Vertices in G and in Gm remain identical. The graph transfor-
mation is

G = (V,A) Gm = (V, Ã)

where Ã =
{
{i, j} : (i, j) ∈ A, (j, i) ∈ A

}
is now a set of undirected edges. Thus,

each edge in Gm represents a possible pairwise exchange. Furthermore, the data of the
problem must also be modified. We denote :
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• w̃{i,j} = w(i,j) + w(j,i) : the merged weight in Gm for {i, j} ∈ Ã.

• R̃{i,j}(ω) = R(i,j)(ω)×R(j,i)(ω), ∀ω ∈ Ω : the merged outcome of {i, j} ∈ Ã.

• B̃ = bB/2c : the modified maximal number of HLA-crossmatch tests that can be
carried out.

In order to carry out the transplant {i, j} ∈ Ã, we need R{i,j} = 1, that is to say R(i,j) ×
R(j,i) = 1. Furthermore, the gain of carrying out the transplant {i, j} ∈ Ã is the gain
of carrying out both the transplant (i, j) and the transplant (j, i). Finally, to ensure that
{i, j} ∈ Ã can be done, both (i, j) and (j, i) need to be tested, so the maximum number
of HLA-crossmatch tests for Gm must be divided by 2 and still needs to be integer.

In the matching formulation, choosing to test {i, j} ∈ Ã is equivalent to test the two
edges (i, j) and (j, i) in G. Likewise, carrying out the transplant {i, j} ∈ Ã is equivalent
to carrying out the two transplants (i, j) and (j, i) in G. Thus, in the matching model
variables denotes pairwise transplants rather than a unique transplant. Furthermore,
the objective (3.6) in this model rather represents the expected total utility of pairwise
transplants.

Figure 9: Left : Original graph with weights and HLA-crossmatch outcomes. Right : Matching graph with modified weights
and modified HLA-crossmatch outcomes.

3.5.2 Problem formulation

In the following, sets of constraints defined in 3.2.2 are applied for the graph Gm.
However, the set F is defined for directed graphs and cannot be applied to Gm. In the
case were K = 2 the set F ∩ CK applied to G is equivalent to the set F̃ applied to Gm
where

∀ ω ∈ Ω, y(ω) ∈ F̃ ⇐⇒
∑
a∈δv

ya(ω) ≤ 1 ∀ v ∈ V (3.11)

Using sets defined in 3.2.2 applied toGm and the new set F̃ , the recourse function of the
matching model can be expressed as

∀ω ∈ Ω, QMM(x, R̃(ω)) =

{
maxy(ω) w̃Ty(ω)

s.t. y(ω) ∈ F̃ ∩ Tx ∩ Y
(3.12)

Notice that here, y(ω) necessarily belongs to CK with K = 2 because of the definition of
F̃ . The matching formulation can be defined as

(MM) : z?MM = max
x∈XB̃

E
[
QMM(x, R̃(ω))

]
(3.13)

Here, B is replaced by B̃ in the definition domain of x. The second stage of this problem
is a maximum-weighted matching problem with only the edges a ∈ Ã of Gm such that
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R̃a = 1 for the considered realization ω of HLA-crossmatch outcomes. Such problem is
easily tractable. The number of variables and constraints is polynomial as a function of
the data.

Figure 10: A solution of BA and a solution of MM (transformed back from the matching graph to the original graph) with
B = 5 and K = 5. Even though cycles of length 5 are allowed in BA, only cycles of length 2 can be formed in the MM
solution.

3.6 Quality of the stochastic solution for KEP models
In the following, we give definitions and a practical meaning for the values defined

in 2.2 in the case of KEP.

3.6.1 Wait-and-see value

TheWS value in a KEP corresponds to the expected objective in the case where HLA-
crossmatch outcomes are known. For all possible realizations of the uncertainty, the
problem to solve is just to find the best KEP run among the transplants that are feasi-
ble and have a negative crossmatch. To solve the problem, it is sufficient to remove edges
with a positive crossmatch from G and it remains a fully deterministic problem. What
is tricky is that as defined by (2.6), at most B transplants can be done as the constraint
is that transplants need to be tested in order to be ultimately done. Thus, even if it is
possible to obtain a solution with more than B transplants, the WS solution is capped to
at most B transplant selections among all the feasible ones in G. The WS value for RA
and for MM can be computed as

WSRA = E
[

max
x∈XB

QRA(x,R(ω))

]
and WSMM = E

[
max
x∈XB̃

QMM(x, R̃(ω))

]

3.6.2 EEV

The KEP problem has integer recourse variables y. As explained in 2.2, the EEV can
be meaningless in such cases. The constraint (3.3a) in the EV becomes ya(ω) ≤ E [Ra]
and as in generalE [Ra] ∈]0, 1[, the solution of theEV is just to fixy(ω) = 0, ∀ω. Thus, this
value does not inform much about the real gain comparing to the deterministic problem
considering only the average outcome scenario. That is why we rather compute the EEVr
for the problem where integrity constraints on the second stage variables are relaxed.
Thus, the solution ofEV still produces integer first-stage variables but the EEVr computed
in this way is an upper bound on the real EEV as it is a relaxation. However, there is not
a practical sense for the decision variables outputted by the expected-value problem. For
RA andMM, expected-value problems can be defined as
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(EVRA) :

 maxx,y wTy
s.t. x ∈ XB

y ∈ F ∩ Tx ∩ Yr
and (EVMM) :


maxx,y w̃Ty

s.t. x ∈ XB̃
y ∈ F̃ ∩ Tx ∩ Yr

with respectivelyE [R] andE[R̃] as unique possibleHLA-outcome in Tx. Notice that here,
the set of constraints Y is replaced by its relaxed version Yr. AsR is a vector of Bernoulli
variables, E [Ra] = P(Ra = 1) = 1− p, ∀a ∈ Awhere p is the failure rate defined in 1.3.2.
Furthermore, elements of R̃ are the product of two independent Bernoulli variables so
similarly, E[R̃a] = (1 − p1)(1 − p2), ∀a ∈ Ã where p1 and p2 are the failure rates of the
two directed edges in the original graphs that form the undirected edge a.

3.6.3 Omniscient budget and budget factor

In the models, the budget B is a parameter and is defined by the labs capability to
analyse HLA-crossmatch tests and the money invested in the KEP. To set a reference for
this value, we define the omniscient budgetBom after which it is not possible to get a better
solution. This value is defined as

• Omniscient budget Bom: Maximum number of transplants that can be carried
out in the case where we know that all the transplants will have a negative HLA-
crossmatch.

This indicates that whatever the HLA-crossmatch outcomes, it will not be possible to
carry out more than Bom transplants. Equivalently, this is the WS value for the NoFailure
generation rule defined in 1.3.2 in the case of unit transplant utilities and with an infi-
nite budget. Using this omniscient budget, we introduce a budget factor bf ≥ 0 which
corresponds to the proportion of Bom that is allowed in the KEP. This value is defined as
:

B = bf ×Bom
In the case of unit transplant utilities, it is possible that WS meetsBom for a given bf ≤ 1.
The WS value is equal to Bom for budget factors greater than 1 because this corresponds
to the case that enough HLA-crossmatch tests are allowed to test all the transplants that
could have been involved in the optimal solution. However, it can be interesting to have
bf ≥ 1 in the practical case because it allows to test more people so as to be more ro-
bust in case of positives crossmatch outcomes. When bf increases, the problem is less
constrained which leads to a higher optimal value.

Figure 11: From left to right : Original KEP pool with failure rates. Wait-and-see problem a priori knowledge for one of the
realization of HLA-crossmatch outcomes. Graph and HLA-crossmatch outcomes considered in the EV of SPr (transplants
have a "proportion" of failure as we take the expected outcome). Graph considered when computing the value ofBom which
is 6 in this case (at most 6 transplants can be carried out in this graph, while satisfy the constraints in 1.2).
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4 Numerical results
In this section, we assess MM and RA on PerfLib instances. The uncertain data does

not have a continuous distribution but enumerating all the possible outcomes for the
HLA-crossmatch leads to 2|A| possibilities and as many constraints. Thus, we approxi-
mate the problem by SAA where we only consider a smaller sample of HLA-crossmatch
outcome scenarios. We first calibrate the number of scenarios to use in order to have
a good SAA and then we evaluate the relevance of the models using quality criteria de-
fined in 2.2. In the following, all the transplants have a unit priorityweight except dummy
edges returning to altruist donors for which the weight is zero.

4.1 Instances
To evaluate themodels described above, we use PrefLib instances. Outcomes of HLA-

crossmatch tests are generated according to the rules defined in [DPS13] and derived
in 1.3.2. As explained in 3.5, the matching model relies on a modified matching graph
which has fewer edges than the original graph. Furthermore, the transformation may
leave vertices unconnected from the rest of the graph, which are removed. Ultimately,
Gm may have fewer vertices than G. The following table shows the number of vertices,
altruistic vertices and edges in the instances for the original graph and for its matching
version.

PrefLib instances Original graph Matching graph
MD-00001-x |V | |Va| |A| |V | |Va| |Ã|
00000010 16 0 47 7 0 7
00000020 17 1 89 10 1 8
00000030 18 2 124 15 2 21
00000040 32 0 168 6 0 4
00000050 33 1 278 30 1 46
00000060 35 3 345 28 3 54
00000070 36 4 372 32 4 78
00000075 64 0 961 39 0 84
00000080 64 0 888 52 0 104
00000085 67 3 1282 66 3 226
00000090 67 3 988 50 3 101
00000095 70 6 1510 66 6 296
00000100 70 6 1597 63 6 268
00000105 73 9 1921 71 9 388

Table 1: PrefLib instances considered with the number of vertices, altruistic vertices and edges in their corresponding graph
and for its matching version.

Here, we can notice that transforming a graph into a matching graph reduces consider-
ably the number of edges in the graph and consequently the number of variables in the
MMmodel comparing to the RA model.

4.2 Scenario calibration
To evaluate models, we solve a SAA of MM and of RA, so we need to calibrate the

number of scenarios to use. The following figures represent the objective value evolution
of MMS for different numbers of scenarios with 50 repeats each. For this model, the
number of recourse variables grows as |Ã| + |Ã| × S. Thus, the solution time is very
sensitive to the number of scenarios used. For this calibration, the budget is fixed to B =
|V |. When the SAA is solved overS scenarios, the real cost of the solution is approximated
by evaluating the decisions over Se = 5000 scenarios. The scenario factor sf represented
on the x-axis is computed as S = sf × |A|. Notice that here, we use the value |A| even if
theMM is applied on the graph Gm = (V, Ã).
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Figure 12: SAA of the matching formulation for 3 different KEP instances and for different scenario factors. For each scenario
factor, 50 SAA are solved and the mean objective cost, the variance of the objective cost and the mean solution time is reported.

According to these figures, setting S = |A| allows to well approximate MM by MMS

because the objective value does not oscillate much and the variance of the cost is close
to 0. However, it is usually more convenient to fix S and Se once for all to be able to
compare the results for different instances. Thus, we use S = 100 and Se = 5000 in the
sequel. We can still see the calibration correctness by comparing the perceived and the
real cost.

4.3 Matching model
We first assess the matching model MM for a budget B = |V | and B = 2|V | using

a BinomialUNOS failure generation rule. In the following, we report the perceived and
the real cost of the solution ofMMS . We also evaluate the real cost if the decision used is
the solution ofMMS where recourse binarity constraints are relaxed. We also report the
EEVr, the WS value, the solution time t for the original problem and the solution time tr
for the relaxed problem in seconds. The value Ci represents the mean number of cycles
of length i in the scenario solutions. We also give the percentage of cycles of each length
i in the solution. For MM, only cycles of length 2 are allowed in the solution. For each
instance, the set of scenarios used for B = |V | and B = 2|V | is not necessary the same.
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MD-00001-x perc cost real cost real cost (relax) EEVr (%VSSr) WS (%EVPI) C2 t tr

1 00000010 4.00 3.98 3.98 3.98 (0%) 3.98 (0%) 2.00 (100%) 0.00 0.00
2 00000020 2.94 2.93 2.93 2.93 (0%) 2.93 (0%) 1.87 (100%) 0.00 0.00
3 00000030 9.00 8.78 8.78 8.73 (0.47%) 8.87 (0.97%) 5.50 (100%) 0.10 0.01
4 00000040 3.62 3.61 3.61 3.61 (0%) 3.61 (0%) 1.81 (100%) 0.00 0.00
5 00000050 8.58 8.60 8.59 8.08 (6.02%) 8.62 (0.35%) 4.74 (100%) 0.04 0.01
6 00000060 10.92 10.70 10.71 10.62 (0.77%) 10.83 (1.14%) 6.96 (100%) 0.26 0.15
7 00000070 11.94 11.82 11.81 11.59 (1.99%) 12.04 (1.85%) 7.94 (100%) 1777.71 443.98
8 00000075 20.44 20.08 20.04 19.88 (0.98%) 20.57 (2.41%) 10.22 (100%) 5.23 4.07
9 00000080 17.84 17.78 17.73 17.35 (2.41%) 17.82 (0.19%) 8.92 (100%) 0.35 0.19
10 00000085 23.86 23.22 23.25 23.22 (0.02%) 23.61 (1.64%) 13.43 (100%) 37.80 12.02
11 00000090 16.84 16.59 16.59 16.21 (2.25%) 16.61 (0.14%) 9.92 (100%) 0.33 0.18

Table 2: Matching model results forB = |V |. Other instances were not solved in less than 3600 seconds.

Figure 13: Matching model results and solution time forB = |V |.

MD-00001-x perc cost real cost real cost (relax) EEVr (%VSSr) WS (%EVPI) C2 t tr

1 00000010 3.94 3.97 3.97 3.97 (0%) 3.97 (0.00%) 1.97 (100%) 0.00 0.00
2 00000020 2.96 2.92 2.92 2.92 (0%) 2.92 (0.00%) 1.98 (100%) 0.00 0.00
3 00000030 8.98 8.83 8.83 8.82 (0.19%) 8.83 (0.01%) 5.49 (100%) 0.02 0.02
4 00000040 3.62 3.61 3.61 3.61 (0%) 3.61 (0.00%) 1.81 (100%) 0.00 0.00
5 00000050 8.56 8.61 8.62 8.14 (5.49%) 8.62 (0.11%) 4.78 (100%) 0.09 0.09
6 00000060 10.80 10.83 10.82 10.68 (1.42%) 10.84 (0.03%) 6.90 (100%) 0.15 0.12
7 00000070 12.08 12.05 12.06 11.94 (0.95%) 12.08 (0.22%) 8.04 (100%) 0.24 0.18
8 00000075 20.34 20.50 20.48 19.35 (5.60%) 20.59 (0.44%) 10.17 (100%) 0.34 0.17
9 00000080 17.66 17.80 17.80 17.02 (4.40%) 17.81 (0.02%) 8.83 (100%) 0.21 0.19
10 00000085 23.32 23.59 23.58 23.24 (1.46%) 23.61 (0.08%) 13.16 (100%) 2.43 1.42
11 00000090 16.42 16.56 16.57 16.27 (1.76%) 16.58 (0.13%) 9.71 (100%) 0.22 0.09
12 00000095 30.00 30.07 29.94 29.07 (3.32%) 30.14 (0.24%) 18.00 (100%) 12.48 9.69
13 00000100 29.98 29.61 29.64 28.46 (3.87%) 29.72 (0.38%) 17.99 (100%) 5.30 2.53
14 00000105 32.84 32.47 32.38 31.48 (3.05%) 32.60 (0.39%) 20.92 (100%) 56.73 35.22

Table 3: Matching model results forB = 2|V |.

Figure 14: Matching model results and solution time forB = 2|V |.
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Wecan notice that for these instances, the SAAwell approximates the original stochas-
tic problem because the perceived cost is close to the real cost. Furthermore, it seems that
the objective of the relaxed problem is very close to the one of the non-relaxed problem.
This relaxed problem can give a very good starting point or a very good initial upper
bound. Setting a budget B = |V | allows to retrieve enough information about the HLA-
crossmatch outcomes to nearly meet the WS value corresponding to this budget. How-
ever, increasing the budget to B = 2|V | allows to carry out many more transplants and
improves the solution time. It seems that the VSSr gain is larger than the EVPI gain. The
%VSSr rises up to about 6% with B = |V | or with B = 2|V |. This means that by consid-
ering a stochastic problem rather than considering the mean scenario allows to perform
6% more transplants. On the other hand, involving more budget to get more confident
about the HLA-crossmatch failure outcomes is not very interesting as we can only hope
to increase by at most 2.5% the number of transplants that will be performed.

4.3.1 Budget sensibility

Above, the budgetwas chosen arbitrarily, butwe can see that it has a significant impact
on the solution. In the following, we study the sensibility of the model to the budget
by varying the budget factor bf defined in 3.6. We show the results for the instances
MD-00001-00000080 and MD-00001-00000090.

Figure 15: Budget sensibility for a BinomialUNOS failure generation rule.

We can clearly notice the breaking point around bf = 0.8 for the left instance and
around bf = 0.9 for the right instance. After this breaking point, the WS value remains
constants. Before this breaking point, the perceived and the real cost are close to the
EEVr but after, they continue to increase to finally meet the WS value. In a practical case,
it should be interesting to pay more to perform more HLA-crossmatch tests in order to
get closer to the WS value. However, if the budget allowed is very low, the decisions
that are given by the EEVr model are still very interesting and it may be unnecessary to
consider a stochastic model.

4.3.2 Failure generation sensibility

The above graphics are obtained with the BinomialUNOS failure generation rule de-
fined in 1.3.2. However, the results are very different when considering a different rule.
In the following, we report the objective value for different budget factors and for the
same instances as in 4.3.1 but for the Constant, the Binomial and the BinomialAPD failure
generation rules.
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Figure 16: Budget sensibility for the Constant, the Binomial and the BinomialAPD failure generation rule.

On these figures, we can see that generation rules for which failure rates are very
different lead to a smaller gap between the EEVr and theWS value. This is quite intuitive
because if transplants have very different failure rates, there will be a tendency to select
only those with a low failure rate. On the contrary, if all transplants have a similar failure
rate, one will necessarily choose to test transplants with amodest failure rate. In practice,
if we are not very confident about the probabilities of failure of the transplants in the
pool, we can hope to have a better solution with the stochastic problem than with the
expected value problem, butwewill be very far from the optimal solution anyway, unless
we provide a very large budget. On the other hand, if the failure rate is roughly known,
the WS value will not be reached either, but we will have an objective close to the WS for
any budget considered.

4.4 Relaxed-arc model
For the relaxed-arc model RA, we also first study the results for the budget B = |V |

and B = 2|V | and for the BinomialUNOS generation. We report the same values as for
the matching model. C4+ denotes the mean number of cycles of length 4 andmore in the
scenario solutions. ForRA, cycles of length greater than 4 are allowed. For each instance,
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the set of scenarios used for B = |V | and B = 2|V | is not necessary the same.

MD-00001-x perc cost real cost real cost (relax) EEVr (%VSSr) WS (%EVPI) C2 C3 C4+ t tr

1 00000010 3.98 3.98 3.99 3.83 (3.68%) 3.99 (0.18%) 0.85 (59.86%) 0.00 (0%) 0.57 (40.14%) 0.13 0.07
2 00000020 6.59 6.55 6.55 6.50 (0.83%) 6.75 (3.06%) 0.37 (22.29%) 0.31 (18.67%) 0.98 (59.04%) 0.69 0.55
3 00000030 10.58 10.30 10.30 8.37 (18.79%) 11.88 (15.28%) 1.68 (42.21%) 0.94 (23.62%) 1.36 (34.17%) 1253.24 813.50
4 00000040 3.52 3.61 3.61 3.54 (1.80%) 3.61 (0.00%) 1.76 (100%) 0.00 (0%) 0.00 (0%) 0.15 0.11

Table 4: Relaxed-arc model results forB = |V |. Other instances were not solved in less than 3600 seconds.

Figure 17: Relaxed-arc model results and solution time forB = |V |.

MD-00001-x perc cost real cost real cost (relax) EEVr (%VSSr) WS (%EVPI) C2 C3 C4+ t tr

1 00000010 3.98 3.99 3.99 3.84 (3.64%) 3.99 (0.01%) 1.03 (68.21%) 0.00 (0%) 0.48 (31.79%) 0.12 0.05
2 00000020 6.78 6.72 6.73 6.50 (3.35%) 6.75 (0.44%) 0.46 (29.11%) 0.12 (7.59%) 1.00 (63.29%) 0.19 0.17
3 00000030 11.91 11.66 11.75 11.46 (1.67%) 11.87 (1.86%) 0.53 (19.56%) 0.67 (24.72%) 1.51 (55.72%) 6.56 4.60
4 00000040 3.64 3.61 3.61 3.61 (0.00%) 3.61 (0.00%) 1.82 (100%) 0.00 (0%) 0.00 (0%) 0.14 0.12
5 00000050 13.99 13.99 13.94 13.39 (4.30%) 14.00 (0.04%) 0.28 (11.81%) 0.27 (11.39%) 1.65 (76.79%) 16.78 10.11
6 00000060 16.85 16.70 16.60 15.04 (9.99%) 16.82 (0.70%) 0.64 (23.70%) 0.24 (8.89%) 1.82 (67.41%) 215.07 168.28
7 00000070 15.08 15.03 14.85 13.80 (8.20%) 15.13 (0.65%) 0.60 (23.17%) 0.18 (6.95%) 1.81 (69.88%) 369.77 241.43

Table 5: Relaxed-arc model results forB = |V |. Other instances were not solved in less than 3600 seconds.

Figure 18: Relaxed-arc model results and solution time forB = 2|V |.

The first notable remark is that the RA model takes longer to be solved than the MM
model. This can be explained by the larger number of variables and constraints as we
can see in 4.1. Nevertheless, we can notice that the perceived cost, the real cost, the WS
and the real cost of the relaxed problem are really close. Thus, we can draw the same
conclusions as for the MM model : the relaxed solution seems to be a very tight upper
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bound and a budgetB = |V | orB = 2|V | allows to retrieve enough information to nearly
meet the WS value. We can notice that as forMM, increasing the budget leads to a better
solution and a smaller solution time. Finally, we can see that most of the cycles formed
in the solution are of length at least 4. Usually, it is very hard to perform more than 5
transplants simultaneously so in general, K ≤ 4. Thus, because we have relaxed the
cycles length constraint, we may form infeasible solutions.

4.4.1 Budget sensibility

When fixing B = |V |, the perceived cost, the real cost, the WS value and the real cost
of the relaxed problem seemed less close thanwhenB = 2|V |. In the following, we study
the sensibility of the solution to the budget with the budget factor bf introduced in 3.6
for a BinomialUNOS failure generation rule for two instances.

Figure 19: Budget sensibility for a BinomialUNOS failure generation rule.

The threshold bf which allows the WS to reach it maximum value is about 1.2 in the
left instance and about 0.8 in the right instance. Contrary to the MM model, we observe
here that the real cost and the perceived cost do not stick to the EEV first. It seems that
the VSS is larger than the one of MM before the WS reaches its maximum value. These
costs grow with bf and meet the WS value for bf = 1 in the left instance and for bf = 0.8
in the right instance.

The cost of the instance MD-00001-00000040 evolves step-wise because of the partic-
ular structure of this instance. If we look at the table in 4.1, we can see that only 2 cycles
of lengths 2 can be formed. When looking at the value of the cost of the solution (for
bf ≥ 0.8), it seems that the solution contains between 3 and 4 transplants as in our in-
stances, wa = 1,∀ a ∈ A. In fact, the solution is only composed of the 2 cycles of lengths
2 and depending on the scenario, it is possible to finally perform transplants for 0, 1 or
for the 2 cycles of length 2.

4.4.2 Failure generation sensibility

We now study the budget sensibility for the other generation rules with the same
instances as above.
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Figure 20: Budget sensibility for the Constant, the Binomial and the BinomialAPD failure generation rule.

Here again, we notice that the results are very different depending on our confidence
in the transplant failure rate. If we know how to evaluate the failure rate of each trans-
plant well enough, solving the stochastic problem will not bring a great gain. On the
other hand, if we are not very good at estimating the transplant failure rate, we can ex-
pect to do many more transplants with a stochastic model rather than with an expected
value model. Indeed, the stochastic problem will allow to create solutions that are more
robust to transplant failures.
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4.5 Recommended KEP policies
With the different results obtained with the two models, we can recommend particu-

lar strategies according to the cases considered.

Low budget and low cycle length

For the casewhere the KEP policy is to form cycles of length atmost 2, we recommend
to use a matching formulation. This allows to retrieve a model that is faster to solve
and which can only give solutions involving cycles of length at most 2. However, if the
available budget for HLA-crossmatch test is very constrained, it will be hard to create
a solution better than the one of the expected-value problem. If we are very confident
about the failure rate of each transplant, then we can hope to have a small gain. However,
when the failure rate is not well known, the gain will be insignificant.

Large budget and low cycle length

When we still need to form cycles of length 2 but when the budget allowed for HLA-
crossmatch tests is larger, we can hope to test smartly in order to be robust to transplant
failures. We still need to use the matching formulation but by increasing the budget, it
is possible that the solution meets the WS value. Furthermore, if the failure rate is well
known, we can expect to have a gain when compared to the expected-value-problem. As
the matching formulation can be solved in a reasonable time, it is recommended to use
it anyway because it gives a better solution than the expected-value problem.

Low budget and large cycle length

In the case where cycles of lengthK ≥ 2 are allowed but where the budget is still con-
strained, it can be interesting to use the relaxed-arc model. Indeed, its VSSr is larger than
the one of the matching model in most cases. Furthermore, if the failure rate is known
without much uncertainty, the gain can be very significant. However, this formulation
usually creates solutions with very long cycles as their length is not constrained. Thus, it
is important to make sure to be able to perform many transplants simultaneously in the
hospitals.

Large budget and large cycle length

When large cycles are allowed and the HLA-crossmatch test budget is large, we can
really hope to have a significant gain with the relaxed-arc model. Indeed, we can clearly
see the large VSSr, especially when the failure rate is well known. Seeing the gains that
can be made, we can say that it is really worthwhile to increase the funds allocated to
KEPs and hospitals to allow for greater freedom in the solutions considered. However,
we must take into account that solution are likely to exceed the maximum cycle length
fixed. Thus, it is important to make sure to be able to performmany transplants simulta-
neously in the hospitals.
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5 Conclusion
In this project, we were interested in the kidney exchange problem. This problem is

particularly difficult because we have to maximize the number of transplants ultimately
carried out in a KEP run, but we do not know which ones will be possible when taking
the decision. To do this, we have the possibility to perform a certain number of HLA-
crossmatch compatibility tests, but this number is often much lower than the total num-
ber of possible transplants. It is therefore necessary to define strategies to create trans-
plant cycles that are robust to compatibility failures. We have studied a first model which
is not usable in practice because of its non-compact formulation. We chose to eliminate
the complicated constraint of maximum cycle length either by relaxing it or by consider-
ing that only cycles of length two were possible. These two options give rise to simpler
problems to solve. In the matching model where only size two cycles are allowed, we
manage to have a small gain on the expected value problem but it is quite hard to reach
WS for a small budget. On the other hand, the gain is significantly higher for the arc
relaxation model. This second model is particularly interesting whatever the test budget
allowed. It creates a much more robust solution to compatibility failures. However, this
model is much longer to solve. It could be interesting to develop structure-exploiting
methods such as the L-shaped method in order to efficiently solve this problem. As this
formulation can produce transplant cycles that are too long to be handled in practice,
it could also be interesting to work on a post-treatment heuristic allowing to reduce the
cycle length to fit practical constraints.
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