el0ps.penalty.BasePenalty¶
- class el0ps.penalty.BasePenalty¶
Base class for penalty defined as separable functions.
This class represent separable mathematical functions expressed as
\[\begin{split}\begin{align*} h : \mathbb{R}^n &\rightarrow \mathbb{R} \cup \{+\infty\} \\ \mathbf{x} &\mapsto h(\mathbf{x}) = \textstyle\sum_{i=1}^n h_i(x_i) \end{align*}\end{split}\]where each splitting term \(h_i\) is proper, lower-semicontinuous, convex, coercive, non-negative, and minimized at \(x_i = 0\).
- __init__(*args, **kwargs)¶
Methods
__init__(*args, **kwargs)conjugate(i, x)Value of the convex conjugate of the i-th splitting term of the penalty function at
x.conjugate_subdiff(i, x)Subdifferential of the conjugate of the i-th splitting term of the penalty function at
x, returned as an interval.param_bndry_neg(i, lmbd)Infimum of the set
self.subdiff(i, tau)wheretau = self.param_limit_neg(i, lmbd).param_bndry_pos(i, lmbd)Supremum of the set
self.subdiff(i, tau)wheretau = self.param_limit_pos(i, lmbd).param_limit_neg(i, lmbd)Infimum of the set
self.conjugate_subdiff(i, tau)wheretau = self.param_slope_neg(i, lmbd).param_limit_pos(i, lmbd)Supremum of the set
self.conjugate_subdiff(i, tau)wheretau = self.param_slope_pos(i, lmbd).param_slope_neg(i, lmbd)Infimum of the set
{x in R | self.conjugate(i, x) <= lmbd}.param_slope_pos(i, lmbd)Supremum of the set
{x in R | self.conjugate(i, x) <= lmbd}.prox(i, x, eta)Proximity operator of the i-th splitting term of the penalty function weighted by
etaatx.subdiff(i, x)Subdifferential of the i-th splitting term of the penalty function at
x, returned as an interval.value(i, x)Value of the i-th splitting term of the penalty function at
x.