el0ps.utils.compute_lmbd_max

el0ps.utils.compute_lmbd_max(datafit, penalty, A)

Return a value \(\lambda_{\max}\) such that the all-zero vector is a solution of an L0-regularized problem whenever \(\lambda \geq \lambda_{\max}\).

The problem is expressed as :rtype: float

\[\textstyle\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{Ax}) + \lambda\|\mathbf{x}\|_0 + h(\mathbf{x})\]

where \(f\) is a el0ps.datafit.BaseDatafit function, \(\mathbf{A} \in \mathbb{R}^{m \times n}\) is a matrix, \(h\) is a el0ps.penalty.BasePenalty function, and \(\lambda\) is a positive scalar.

Parameters:
datafit: BaseDatafit

Problem datafit function.

penalty: BasePenalty

Problem penalty function.

A: NDArray

Problem matrix.

Returns:
lmbd_max: float

The value lmbd_max ensuring an all-zero solution.