el0ps.penalty.SymmetricPenalty

class el0ps.penalty.SymmetricPenalty

Base class for symmetric BasePenalty functions.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

conjugate(i, x)

Value of the convex conjugate of the i-th splitting term of the penalty function at x.

conjugate_subdiff(i, x)

Subdifferential of the conjugate of the i-th splitting term of the penalty function at x, returned as an interval.

param_bndry(i, lmbd)

param_bndry_neg(i, lmbd)

Infimum of the set self.subdiff(i, tau) where tau = self.param_limit_neg(i, lmbd).

param_bndry_pos(i, lmbd)

Supremum of the set self.subdiff(i, tau) where tau = self.param_limit_pos(i, lmbd).

param_limit(i, lmbd)

param_limit_neg(i, lmbd)

Infimum of the set self.conjugate_subdiff(i, tau) where tau = self.param_slope_neg(i, lmbd).

param_limit_pos(i, lmbd)

Supremum of the set self.conjugate_subdiff(i, tau) where tau = self.param_slope_pos(i, lmbd).

param_slope(i, lmbd)

Supremum of the set {x in R | self.conjugate(i, x) <= lmbd}.

param_slope_neg(i, lmbd)

Infimum of the set {x in R | self.conjugate(i, x) <= lmbd}.

param_slope_pos(i, lmbd)

Supremum of the set {x in R | self.conjugate(i, x) <= lmbd}.

prox(i, x, eta)

Proximity operator of the i-th splitting term of the penalty function weighted by eta at x.

subdiff(i, x)

Subdifferential of the i-th splitting term of the penalty function at x, returned as an interval.

value(i, x)

Value of the i-th splitting term of the penalty function at x.