el0ps.penalty.SymmetricPenalty¶
- class el0ps.penalty.SymmetricPenalty¶
Base class for symmetric
BasePenalty
functions.- __init__(*args, **kwargs)¶
Methods
__init__
(*args, **kwargs)conjugate
(i, x)Value of the convex conjugate of the i-th splitting term of the penalty function at
x
.conjugate_subdiff
(i, x)Subdifferential of the conjugate of the i-th splitting term of the penalty function at
x
, returned as an interval.param_bndry
(i, lmbd)param_bndry_neg
(i, lmbd)Infimum of the set
self.subdiff(i, tau)
wheretau = self.param_limit_neg(i, lmbd)
.param_bndry_pos
(i, lmbd)Supremum of the set
self.subdiff(i, tau)
wheretau = self.param_limit_pos(i, lmbd)
.param_limit
(i, lmbd)param_limit_neg
(i, lmbd)Infimum of the set
self.conjugate_subdiff(i, tau)
wheretau = self.param_slope_neg(i, lmbd)
.param_limit_pos
(i, lmbd)Supremum of the set
self.conjugate_subdiff(i, tau)
wheretau = self.param_slope_pos(i, lmbd)
.param_slope
(i, lmbd)Supremum of the set
{x in R | self.conjugate(i, x) <= lmbd}
.param_slope_neg
(i, lmbd)Infimum of the set
{x in R | self.conjugate(i, x) <= lmbd}
.param_slope_pos
(i, lmbd)Supremum of the set
{x in R | self.conjugate(i, x) <= lmbd}
.prox
(i, x, eta)Proximity operator of the i-th splitting term of the penalty function weighted by
eta
atx
.subdiff
(i, x)Subdifferential of the i-th splitting term of the penalty function at
x
, returned as an interval.value
(i, x)Value of the i-th splitting term of the penalty function at
x
.